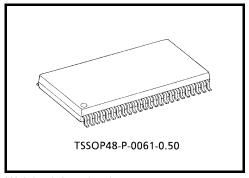
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74VCX16374FT


Low-Voltage 16-Bit D-Type Flip-Flop with 3.6-V Tolerant Inputs and Outputs

The TC74VCX16374FT is a high-performance CMOS 16-bit D-type flip flop. Designed for use in 1.8-V, 2.5-V or 3.3-V systems, it achieves high-speed operation while maintaining the CMOS low power dissipation.

It is also designed with over voltage tolerant inputs and outputs up to $3.6\ V\!.$

This 16-bit D-type flip-flop is controlled by a clock input (CK) and a output enable input (\overline{OE}) which are common to each byte. It can be used as two 8-bit flip-flops or one 16-bit flip-flop. When the \overline{OE} input is high, the outputs are in a high-impedance state.

All inputs are equipped with protection circuits against static discharge.

Weight: 0.25 g (typ.)

Features

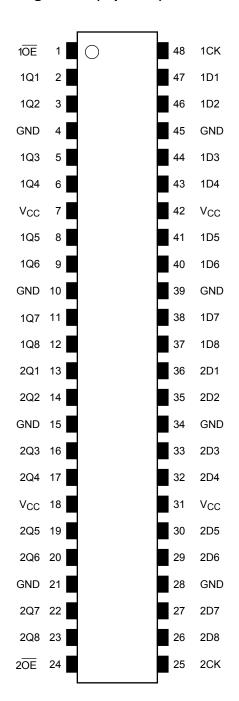
- Low-voltage operation: V_{CC} = 1.8 to 3.6 V
- High-speed operation: $t_{pd} = 3.0 \text{ ns (max) (V}_{CC} = 3.0 \text{ to } 3.6 \text{ V)}$

: $t_{pd} = 3.9 \text{ ns (max) (VCC} = 2.3 \text{ to } 2.7 \text{ V)}$

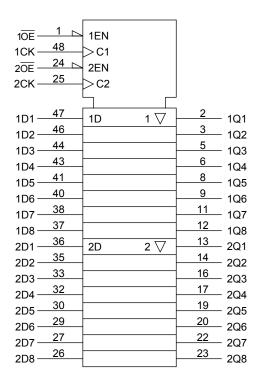
: $t_{pd} = 6.0 \text{ ns (max) (V}_{CC} = 1.8 \text{ V})$

• Output current: $I_{OH}/I_{OL} = \pm 24 \text{ mA (min)} (V_{CC} = 3.0 \text{ V})$

: $I_{OH}/I_{OL} = \pm 18 \text{ mA (min) (V}_{CC} = 2.3 \text{ V)}$


: $I_{OH}/I_{OL} = \pm 6 \text{ mA (min) (V}_{CC} = 1.8 \text{ V)}$

- Latch-up performance: ±300 mA
- ESD performance: Machine model > ±200 V


: Human body model $> \pm 2000 \text{ V}$

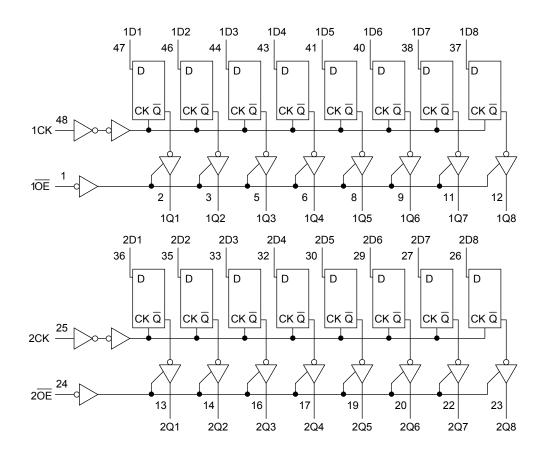
- Package: TSSOP (thin shrink small outline package)
- 3.6-V tolerant function and power-down protection provided on all inputs and outputs

Pin Assignment (top view)

IEC Logic Symbol

Truth Table

	Outputs		
1 OE	1CK	1D1-1D8	1Q1-1Q8
Н	Х	Х	Z
L	$\overline{}$	Х	Qn
L		L	L
L		Н	Н


	Outputs		
2 OE	2CK	2D1-2D8	2Q1-2Q8
Н	X	Х	Z
L	\rightarrow	Х	Qn
L		L	L
L		Н	Н

X: Don't care

Z: High impedance

Qn: No change

System Diagram

3

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit	
Power supply voltage	V _{CC}	-0.5 to 4.6	V	
DC input voltage	V _{IN}	-0.5 to 4.6	V	
		-0.5 to 4.6 (Note 2)		
DC output voltage	V _{OUT}	-0.5 to V _{CC} + 0.5	V	
		(Note 3)		
Input diode current	I _{IK}	-50	mA	
Output diode current	I _{OK}	±50 (Note 4)	mA	
DC output current	lout	±50	mA	
Power dissipation	P _D	400	mW	
DC V _{CC} /ground current per supply pin	I _{CC} /I _{GND}	±100	mA	
Storage temperature	T _{stg}	-65 to 150	°C	

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Note 2: OFF state

Note 3: High or low state. IOUT absolute maximum rating must be observed.

Note 4: $V_{OUT} < GND, V_{OUT} > V_{CC}$

Recommended Operating Range (Note 1)

Characteristics	Symbol	Rating	Unit	
Power supply voltage	V _{CC}	1.8 to 3.6	V	
Tower supply voltage	VCC	1.2 to 3.6 (Note 2)	V	
Input voltage	V _{IN}	-0.3 to 3.6	V	
Output voltage	V _{OUT}	0 to 3.6 (Note 3)	V	
Output voltage	VOUT	0 to V _{CC} (Note 4)	v	
		±24 (Note 5)		
Output current	I _{OH} /I _{OL}	±18 (Note 6)	mA	
		±6 (Note 7)		
Operating temperature	T _{opr}	-40 to 85	°C	
Input rise and fall time	dt/dv	0 to 10 (Note 8)	ns/V	

Note 1: The recommended operating conditions are required to ensure the normal operation of the device.

Unused inputs must be tied to either VCC or GND.

4

Note 2: Data retention only

Note 3: OFF state

Note 4: High or low state

Note 5: $V_{CC} = 3.0 \text{ to } 3.6 \text{ V}$

Note 6: $V_{CC} = 2.3 \text{ to } 2.7 \text{ V}$

Note 7: $V_{CC} = 1.8 \text{ V}$

Note 8: $V_{IN} = 0.8$ to 2.0 V, $V_{CC} = 3.0$ V

Electrical Characteristics

DC Characteristics (Ta = -40 to 85°C, 2.7 V < $V_{\text{CC}} \leq 3.6 \text{ V})$

Character	istics	Symbol	Test Condition		V _{CC} (V)	Min	Max	Unit				
	H-level	V _{IH}		_	2.7 to 3.6	2.0	_	.,				
Input voltage	L-level	V _{IL}		_	2.7 to 3.6	_	0.8	V				
				I _{OH} = -100 μA	2.7 to 3.6	V _{CC} - 0.2	_					
	H-level	V _{OH}	V _{IN} = V _{IH} or V _{IL}	I _{OH} = -12 mA	2.7	2.2	_					
				I _{OH} = -18 mA	3.0	2.4	_					
Output voltage				I _{OH} = -24 mA	3.0	2.2	_	V				
,			$V_{IN} = V_{IH}$ or V_{IL}	I _{OL} = 100 μA	2.7 to 3.6	_	0.2					
	L-level	\/-·		$V_{IN} = V_{IH}$ or V_{IL}	$I_{OL} = 12 \text{ mA}$	2.7	_	0.4				
	L-ievei	V _{OL}			AIN - AIH OL AIF	AIM - AIH OLAIC	VIN - VIH OI VIL	VIIV — VIH OI VIL	VIN - VIN OI VIL	$I_{OL} = 18 \text{ mA}$	3.0	_
				I _{OL} = 24 mA	3.0	_	0.55					
Input leakage curre	ent	I _{IN}	V _{IN} = 0 to 3.6 V		2.7 to 3.6	_	±5.0	μА				
3-state output OFF	state current	I _{OZ}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 \text{ V}$		2.7 to 3.6	_	±10.0	μΑ				
Power-off leakage	current	I _{OFF}	V _{IN} , V _{OUT} = 0 to 3.6 V		0	_	10.0	μА				
		1	V _{IN} = V _{CC} or GND		2.7 to 3.6	_	20.0					
Quiescent supply c	Quiescent supply current I _{CC}		$V_{CC} \le (V_{IN}, V_{OUT}) \le 3.6 \text{ V}$		2.7 to 3.6	_	±20.0	μА				
Increase in I _{CC} per	unit	Δlcc	$V_{IH} = V_{CC} - 0.6 V$		2.7 to 3.6	_	750					

DC Characteristics (Ta = -40 to 85°C, 2.3 V \leq V_{CC} \leq 2.7 V)

Characte	ristics	Symbol	Test Condition		V _{CC} (V)	Min	Max	Unit		
	H-level	V _{IH}			2.3 to 2.7	1.6				
Input voltage	L-level	V _{IL}		_	2.3 to 2.7	_	0.7	V		
				I _{OH} = -100 μA	2.3 to 2.7	V _{CC} - 0.2	_			
	H-level	Voh	V _{IN} = V _{IH} or V _{IL}	$I_{OH} = -6 \text{ mA}$	2.3	2.0	_			
		011	V _{IN} = V _{IH} or V _{IL}		111 111	I _{OH} = -12 mA	2.3	1.8	_	
Output voltage				I _{OH} = -18 mA	2.3	1.7	_	V		
				V _{IN} = V _{IH} or V _{IL}		I _{OL} = 100 μA	2.3 to 2.7	_	0.2	
	L-level	V _{OL}			I _{OL} = 12 mA	2.3	_	0.4		
				I _{OL} = 18 mA	2.3	_	0.6			
Input leakage curre	ent	I _{IN}	V _{IN} = 0 to 3.6 V		2.3 to 2.7	_	±5.0	μА		
2 state output OFF	- state current	la-	V _{IN} = V _{IH} or V _{IL}	$V_{IN} = V_{IH}$ or V_{IL}			.40.0	•		
3-state output OFF state current I _C		loz	V _{OUT} = 0 to 3.6 V		2.3 to 2.7		±10.0	μΑ		
Power-off leakage	current	loff	V _{IN} , V _{OUT} = 0 to 3.6 V		0		10.0	μА		
Quiescent supply	current	loo	$V_{IN} = V_{CC}$ or GND		2.3 to 2.7		20.0	μА		
Quiescerit Supply (Curtent	Icc	$V_{CC} \le (V_{IN}, V_{OUT}) \le$	3.6 V	2.3 to 2.7	_	±20.0	μΑ		

DC Characteristics (Ta = -40 to 85°C, 1.8 V \leq V_{CC} < 2.3 V)

Characteris	stics	Symbol	Test Condition			Min	Max	Unit
Ondradient	51100	Cymbol	1001 00	ondition	V _{CC} (V)	141111	Wax	Offic
Input voltage	H-level	V _{IH}	_	_	1.8 to 2.3	$\begin{array}{c} 0.7 \times \\ V_{CC} \end{array}$		V
input voltage	L-level	V _{IL}	_	_	1.8 to 2.3		0.2 × V _{CC}	V
	H-level	Voh	V _{IN} = V _{IH} or V _{IL}	I _{OH} = -100 μA	1.8	V _{CC} - 0.2		
Output voltage				$I_{OH} = -6 \text{ mA}$	1.8	1.4	_	V
	L-level	V/a-:	V _{IN} = V _{IH} or V _{II}	$I_{OL} = 100 \mu A$	1.8	_	0.2	
	L-IEVEI	V _{OL}	VIN - VIH OI VIL	I _{OL} = 6 mA	1.8		0.3	
Input leakage currer	nt	I _{IN}	V _{IN} = 0 to 3.6 V		1.8	_	±5.0	μА
3-state output OFF	state current	I _{OZ}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 \text{ V}$			_	±10.0	μА
Power-off leakage c	urrent	I _{OFF}	V _{IN} , V _{OUT} = 0 to 3.6 V		0	_	10.0	μΑ
O de constitución de la constitu		loo	$V_{IN} = V_{CC}$ or GND		1.8		20.0	μА
Quiescent supply cu	III CIII	Icc	$V_{CC} \le (V_{IN}, V_{OUT}) \le 3.6$	6 V	1.8		±20.0	μΑ

6

AC Characteristics (Ta = –40 to 85°C, input: $t_r = t_f$ = 2.0 ns, C_L = 30 pF, R_L = 500 Ω) (Note 1)

Characteristics	Symbol	Test Condition		Min	Max	Unit
Characteristics	Symbol	rest Condition	V _{CC} (V)	IVIIII	IVIAX	Offic
			1.8	125	_	
Maximum clock frequency	f _{max}	Figure 1, Figure 2	2.5 ± 0.2	200	_	MHz
			3.3 ± 0.3	250	_	
Dranagation delay time	4		1.8	1.5	6.0	
Propagation delay time (CK-Q)	t _{pLH}	Figure 1, Figure 2	2.5 ± 0.2	1.0	3.9	ns
(CK-Q)	t _{pHL}		3.3 ± 0.3	0.8	3.0	
			1.8	1.5	7.0	
3-state output enable time	t _{pZL}	Figure 1, Figure 3	2.5 ± 0.2	1.0	4.6	ns
	t _{pZH}		3.3 ± 0.3	0.8	3.5	
	t _{pLZ}	Figure 1, Figure 3	1.8	1.5	5.0	ns
3-state output disable time			2.5 ± 0.2	1.0	3.8	
			3.3 ± 0.3	0.8	3.5	
N dia ina construction acceptable			1.8	3.0	_	
Minimum pulse width (CK)	t _{w (H)}	Figure 1, Figure 2	2.5 ± 0.2	1.5	_	ns
(CK)	t _{w (L)}		3.3 ± 0.3	1.5	_	
			1.8	2.5	_	
Minimum setup time	ts	Figure 1, Figure 2	2.5 ± 0.2	1.5	_	ns
			3.3 ± 0.3	1.5	_	
			1.8	1.0	_	
Minimum hold time	t _h	Figure 1, Figure 2	2.5 ± 0.2	1.0	_	ns
			3.3 ± 0.3	1.0	_	
	•		1.8	_	0.5	
Output to output skew	tosLH	(Note 2)	2.5 ± 0.2	_	0.5	ns
	t _{osHL}		3.3 ± 0.3	_	0.5	

Note 1: For $C_L = 50$ pF, add approximately 300 ps to the AC maximum specification.

Note 2: Parameter guaranteed by design.

 $(t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|)$

Dynamic Switching Characteristics

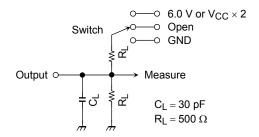
(Ta = 25°C, Input: $t_r = t_f = 2.0 \text{ ns}, C_L = 30 \text{ pF}, R_L = 500 \Omega$)

Characteristics	Symbol	Test Condition			Тур.	Unit
Characteristics	Symbol	rest condition		V _{CC} (V)	τyp.	Offic
		$V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$ (N	Note)	1.8	0.25	
Quiet output maximum dynamic V _{OL}	V _{OLP}	$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$ (N	Note)	2.5	0.6	V
		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ (N	Note)	3.3	0.8	
		$V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$ (N	Note)	1.8	-0.25	
Quiet output minimum dynamic V _{OL}	V _{OLV}	$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$ (N	Note)	2.5	-0.6	V
<u></u>		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ (N	Note)	3.3	-0.8	
		$V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$ (N	Note)	1.8	1.5	
Quiet output minimum dynamic V _{OH}	V _{OHV}	$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$ (N	Note)	2.5	1.9	V
···		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ (N	Note)	3.3	2.2	

Note: Parameter guaranteed by design.

Capacitive Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition		V _{CC} (V)	Тур.	Unit
Input capacitance	C _{IN}	_		1.8, 2.5, 3.3	6	pF
Output capacitance	CO	_		1.8, 2.5, 3.3	7	pF
Power dissipation capacitance	C _{PD}	f _{IN} = 10 MHz	(Note)	1.8, 2.5, 3.3	20	pF


Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

8

Average operating current can be obtained by the equation:

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/16 \text{ (per bit)}$

AC Test Circuit

Parameter	Switch			
t _{pLH} , t _{pHL}	Open			
t _{pLZ} , t _{pZL}	6.0 V V _{CC} × 2	$@V_{CC} = 3.3 \pm 0.3 \text{ V} \\ @V_{CC} = 2.5 \pm 0.2 \text{ V} \\ @V_{CC} = 1.8 \text{ V}$		
t _{pHZ} , t _{pZH}	GND			

Figure 1

AC Waveform

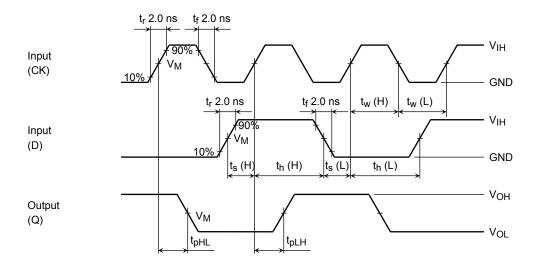
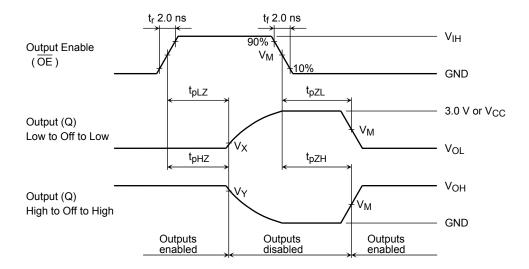
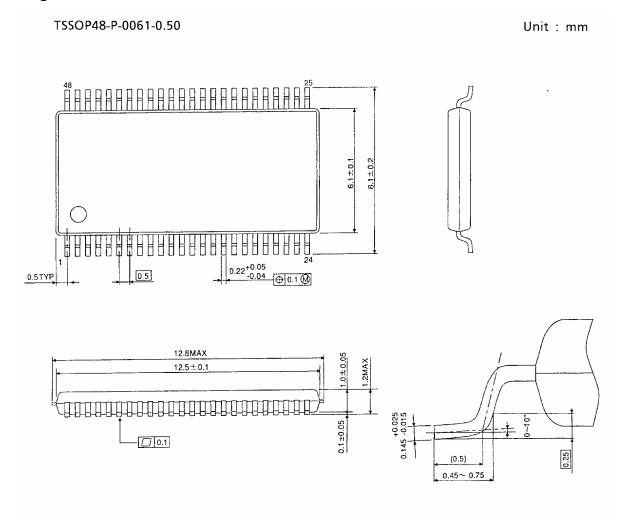


Figure 2 t_{pLH} , t_{pHL} , t_w , t_s , t_h

9




Figure 3 $t_{pLZ}, t_{pHZ}, t_{pZL}, t_{pZH}$

Symbol			
Syllibol	$3.3\pm0.3~\textrm{V}$	$2.5\pm0.2\textrm{V}$	1.8 V
V_{IH}	2.7 V	V _{CC}	V _{CC}
V _M	1.5 V	V _{CC} /2	V _{CC} /2
VX	V _{OL} + 0.3 V	V _{OL} + 0.15 V	V _{OL} + 0.15 V
V_{Y}	V _{OH} – 0.3 V	V _{OH} – 0.15 V	V _{OH} – 0.15 V

10 2006-02-01

Package Dimensions

TOSHIBA

Weight: 0.25 g (typ.)

Note: Lead (Pb)-Free Packages

TSSOP48-P-0061-0.50

RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patents or other rights of
 TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.